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SIGNIFICANCE AND EXPLANATION

3We consider the motion of a viscous fluid filling the whole space R ,

governed by the classical Navier-Stokes equations (1). Existence of global

(in time) regular solutions for that system of non-linear partial differential

equations, is still an open problem. From either the mathematical and the

physical point of view, an interesting property is the stability (or not) of

the (eventual) global regular solutions. Here, we assume that v1 (t,x) is a

solution, with initial data al(x). For small perturbations of a,, we want

the solution v1 (t,x) being slightly perturbed, too. Due to viscosity, it is

even expected that the perturbed solution v2 (t,x) approaches the unperturbed

one, as time goes to +-. This is just the result proved in this paper. To

measure the distance between v1(t,x) and v2(t,x), at each time t,

suitable norms are introduced (LP-norms).

For fluids filling a bounded vessel, exponential decay of the above

distance, is expected. Such a strong result is not reasonable, for fluids

filling the entire space./.In this case, we prove that the LP-distance

between v1  and v2  goes to zero as
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LP-STABILITY FOR THE STRONG SOLUTIONS OF THE
NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE

H. Beirao da Veiga and P. Secchi

introduction. Consider the initial value problem for the non-stationary

Wavier-Stokes equations in the whole space R3

v* + (v)v - AV + VW - 0 in QT B]0,T~xR3

div v -0 in QT

3
()V 1t =-a in R

lim v(t,x) -0 for t c JO,Tf

lxi+
3

where T 1 0,-1, v' - -L and (v*V)v - v
at x

The given initial velocity a(x) satisfies div a -0 in R3.

Moreover, the pressure wr is determined by the condition ham i(t'x) 0

lxI+-
for t e ]0,T[. By a solution of problem (1), we mean a divergence free

vector v(t,x) r* LqOTLr for some q, r with q, r ;o 2, such that

T
r [v-T' + (v-V)T.v + v*.qidx dt - (a (p I t0 dx

0

* for every regular divergence free vector field V(t,x), with compact support

with respect to the space variables and such that V(T,x) 0. We set

*Department of Mathematics -University of Trento -38050 POVO (Trento) Italy.
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N N %%
0O



LP = L ( R3  , I p = ,

L (R)

Np(v) = f3Ivvl2lvlp-2dx3R

Other notations are standard, or will be introduced in the sequel. Let

p > 3 and a LA Lp + 2 , div a, = 0. Assume that there exists a global

solution v 1 c L (0,+-;LP+2 ) of problem (1), with initial velocity a, and

pressure w V This solution is strong and unique.1 We prove the following

stability result:

" L1

Theorem A Assume that the above conditions hold and let a2 E L LP , be

such that div a2 = 0. Then, there exists a positive constant y0  such that,

* if

(2) jal - a 2 Ip < Y'O

there exists a unique solution v 2 C C([0,+-);LP) of (1) with initial data

a2. This solution verifies the estimate

(3) Iv1(t) - v 2 (t)Ip 4 C" + t)•3/4

The constants y0 and C depend on p, on the L and L2 norms of the

initial data a1  and a 2 , and on the L*(0,+;L + 2 ) norm of v i. In

particular, by considering initial data a 2 such that

j la2 11  < jall1  + k , la 2 12  < la,1 2 + k2

where k, and k2 are any positive constants, y0  and C depend only on

kl, k2 , and on the norms lal1I, jal 1 2  and ,Iv 1  of the

2 12 1~L* (0,+-; Lp2

unperturbed solution v
1

.

We refer the reader to the results proved in [2]. See also [5], and

references there.
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'. .The local existence and uniqueness of a strongly continuous solution

v2 (t) with values in L2 ) LP  is well known. The bound (3) guarantees the

global existence of v2 (t).

The proof of theorem A follows the method introduced in reference [1] in

order to study the asymptotic behaviour of the solutions of system (1).

Proof of theorem A. The difference w = v2 - vl satisfies the following

system:

(4) w' + (v 2*V)w + (woV)v - Aw + VP = 0 in -QT

div w =0 in

%J wlt=0 -- in R3

where P = 2 -v 1  and a E a2 -a. Multiply both sides of equation (4) by

IwjP-2w and integrate over R3 . After suitable integrations by parts we

obtain

a I d I + N (w) + 4 12 f I V Iwp/212
p d p p 2

%p

Sf (v 2.V)w. IwIp- 2w _ f(w.V)v iwIp-2w fvP.iwIp-2W

The first term on the right-hand side is zero since v2  is divergence free.

By integrating by parts the other two terms we get

1 , IwIp + N (w) (p- f LIwP" ,vw iv +

p dt p (

* (5)

(p- 2) f IPIlwIP21vwI

Consider the first integral on the right-hand side of (5). By HWlder's and

* Young's inequalities one has

-i -3-
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(p - 1) f Iwjp-l1vwIlV1l 4 (p - 1)N (w)1/ 2 (fiwiPJv 2)1/2
P

(6) 1 N (w) + 2(p - 1)2 f IwIp Iv11
2

< 1 N (w) + 2 (p - 1)2 1wl p  Iv 12
8 p p+2 1 p+2

On the other hand, one can prove the following inequality (see (1], equation

"I (1.14)):

3 p(p- 1 )

(7) IwIp  c N (w) +2 Iwl P+2
p+2 p p

hence, from (6), one obtains

2(P+2), lwlp p-1
":' (8) (p - 1) f Iwlp-11vwI Ivll < N (w) + ClwIpIvj p+2

Consider now the second integral on the right-hand side of (5). By WMlder's

and Young's inequalities we have

(p - f2) f IPIIw(p-2IVwl (p -2)(fIPI2Iwlp-2)1/2 N (w)1/2

(9) < 2(p - 2)2 f lpI21wIp-2 + N (w)
8p

< 2(p - 2)2 1PI 2  Iw... 2 + 1 N (w)
pL2 p+2 8 p
2

To estimate P, we take the divergence of (4) and obtain

. a2 .v2
AP -ax ax. wi(v + v23) =  ax a ax. [w (2v 1 + w ) ]

jwi~j

From the Calder6n-Zygmund inequality one has

II C , wi(2vi + w j )Ip+2  irj 1
2 2
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then, by Wlder's inequality,

IP1p 2  4 Clv12+2 lvi I2 + lW1p42)p±2p+2 pv112 P"12)

2

By introducing this last inequality in (9) and by using inequality (7), we get

(p - 2) flPjlwjp-2Iwvwl < C +j ( OVl l2 + Iw2)+2  + N (w
p+2 p+ 2 ) 8 +jp

3 R(P-1) 3

(10) 4 C N~ p p+2 I v +2 + C N (w)pIwjPz1 + N (w)
P P p2 + C r p 8 p

2 2 y(P-1)

4 1 N (w) + Cj P p-1 p- 3

4 p CwIlvp p 2  +C Iwp

0 Hence, by using inequalities (8) and (10), we get from (5)

2(P+2i p(P-1)
:d w l p-1 p-3
-IwIp + - N (w) 4Clvlplv I + clvi(11) pdt p 2 p p 1 p+2 p

On the other hand, one can prove the following Sobolev type inequality

(seet1], equation (3.2))

N () 0C Iwlp p

and, by interpolation, one has

0 -
3 (p-2 )

::- I~lp ' IvIsIp '2 Il:p-
I p 2 3p

4) Hence

(12) N Of) > Clw1- lwlP I

where 8 - 4p/3(p-2). On the other hand, by a result proved in reference [31

(see also [4]) on the L2-decay of the solutions of the Navier-Stokes

N-5-
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equations, one has

(13 -v()2 3/4
(13) Iw(t)1 2 4 lVl(t)12 + lv2(t)12 . C (t + 1)

where C depends only on the L I and L 2 -norms of the initial velocities.

Then, from (12) and (13), we obtain

(14) N (w) ) C (t + 1)3 S/4  p+0

p p

* - Hence, from (11) and (14), we have

'. "P2(p+2) p(p-P )

1 d IwIP + C(t + 1)3B/4 p +IPS cl + c1w, ,

pd't p p p

+2from which we obtain, since v I is bounded in LP  , uniformly in time,

(15) d Iwl + c (t + 1)' 4 w p+1 4+ C w l + C

*dt p 1 p 2 p 3 p

Ii 2
-where Y 2p /3(p - 2 )(p - 3). In (15), C1  depends on p and on the L

and L2 -norms of the initial velocities, C 2  depends on p and

v 1  p+2 C3  depends only on p. Consider now the corresponding
L (0,+-;L

., o.d.e.

y(t) + C 1(t + 1)3B/4(y(t))8+1 = 2Y(t) + C3 (Y(t))
+ 6+

(16)

y(O) = lcI
p

* We prove now that, if Ilcp is sufficiently small, then

-.'" y(t) 4 C(t + 1) -3/ . By comparison theorems for o.d.e. it will follow that

%
% w(t)l p y(t); hence (3) holds. Let to c ]0,+oo( be such that

0

" 2 + C3 4/30
(17) to > ( 2 - 1

0 C

-6-
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By the continuous dependence on the initial data of the solution of (16), one

can find y0 > 0 (depending on p and on Ci, i = 1,2,3) sufficiently small

h _such that, if lal p 4 Y0" then y(t) < 1 for each t c [0,t 0]. Moreover, if

there exists t ) t0  such that y(t) = 1, then from (16) and (17) one has
'has

38/4y'(t) = -C(t + 113/) +C

S-C(t 0 + 1)38/4 + C2 + C3 < 0

This implies y(t) 4 1, for any t ) 0. From (16), we then obtain

y(t) < z(t) for any t > 0, where z(t) is the solution of

z'(t) + C1 (t + 1) 3/4(z(t)) +1 (C + C)z(t)2 3%

- (18)

z(O) = Ic 1p

Equation (18) is of Bernoulli type and its solution is given by

h 1
(C+C )t t 8(C+C)s 3 8

2 3 2 -6/z(t) = e IIX 8 + r e 8C (s + 1) ds]
p 6 0

Hence

38/4 8(C 2 + C3 )t

z(t) + t) 38/4 < 
(1 + t) 

e

-C t e (C2 + C 3)s ( )3 /4dsY0 -8C f e 2(3 s +

0
SA

By the £'Hopital theorem one easily shows that the right-hand-side of the

above inequality converges to (C2 + C3 )/CI as t + +-. Since it is equal to

*y0 for t = 0, it follows that it is bounded, in the interval [0,+-) by a

constant C (which depends only on C1, C2, C3 and p).
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